Approximate pure Nash equilibria

in weighted congestion games

Max Klimm

Combinatorial Optimization and Graph Algorithms

Technische Universität Berlin

Christoph Hansknecht

Combinatorial Optimization and Graph Algorithms

Technische Universität Berlin

Alexander Skopalik

Heinz Nixdorf Institute University of Paderborn

Introduction

Introduction

Nash equilibrium

Strategy combination such that no player can unilaterally improve

Introduction

set of resources R

set of players N

set of resources R with cost functions $c_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$

set of players N

set of resources R with cost functions $c_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$

set of players N with strategies $S_i \subseteq 2^R$

set of resources R with cost functions $c_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$

set of players N with strategies $S_i \subseteq 2^R$

set of resources R with cost functions $c_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$

set of players N with strategies $S_i \subseteq 2^R$

congestion game private costs: $\pi_i(s) = \sum_{r \in S_i} c_r(|j \in N : r \in S_j|)$

[Rosenthal, IJGT `73]

Theorem Congestion games have a Nash equilibrium.

Set of Resources R with cost functions $c_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$

Set of players N with strategies $S_i \subseteq 2^R$

congestion game private costs: $\pi_i(s) = \sum_{r \in S_i} c_r(|j \in N : r \in S_j|)$

Set of Resources R with cost functions $c_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$

Set of players N with strategies $S_i \subseteq 2^R$

congestion game private costs: $\pi_i(s) = \sum_{r \in s_i} c_r(|j \in N : r \in s_j|)$

weighted congestion game private costs: $\pi_i(s) = \sum_{r \in s_i} d_i c_r (\sum_{j \in N : r \in s_j} d_j)$

[Fotakis et al.,TCS `05]

[Fotakis et al.,TCS `05]

[Goemans et al., FOCS '05]

[Fotakis et al.,TCS `05]

[Goemans et al., FOCS '05]

[Fotakis et al.,TCS `05]

Previous work

[Caragiannis et al.,EC `12]

Functions	Approximation factors	
quadratic	2	
cubic	6	
polynomials of max. degree Δ	$\Delta!$	

Functions	Approximation factors	
quadratic	2	
cubic	6	
polynomials of max. degree Δ	$\Delta+1$	

Functions	Approximation factors	
quadratic	4/3	
cubic	1.785	
polynomials of max. degree Δ	Δ +1	

Functions	Approximation factors	
quadratic	4/3	
cubic	1.785	
polynomials of max. degree Δ	Δ +1	
concave	3/2	

Functions	Approximation factors	
	2 players	all games
quadratic	1.054	4/3
cubic	1.074	1.785
polynomials of max. degree Δ		Δ +1
concave		3/2

Let
$$P(s) = \sum_{r \in R} P_r(s)$$
, where $\sum_{k=1,...,d_r(s)} c_r(k)$

Let
$$P(s) = \sum_{r \in R} P_r(s)$$
, where $\sum_{k=1,...,d_r(s)} c_r(k)$

Let
$$P(s) = \sum_{r \in R} P_r(s)$$
, where $\sum_{k=1,...,d_r(s)} c_r(k)$

Let
$$P(s) = \sum_{r \in R} P_r(s)$$
, where $\sum_{k=1,...,d_r(s)} c_r(k)$

Let
$$P(s) = \sum_{r \in R} P_r(s)$$
, where $\sum_{k=1,...,d_r(s)} c_r(k)$

[Rosenthal, IJGT `73]

 χ

Let
$$P(s) = \sum_{r \in R} P_r(s)$$
, where $\sum_{k=1,...,d_r(s)} c_r(k)$

$$c_r(x)$$

$$P(t_n, s_{-n}) - P(s) = \sum_{r \in t_n} c_r(d_r(t_n, s_{-n})) - \sum_{r \in s_n} c_r(d_r(s)) = \pi_i(t_i, s_{-i}) - \pi_i(s)$$

Weighted players

Weighted players

Observation For a convex function,

- the potential is minimized for non-increasing players
- the potential is maximized for non-decreasing players

Weighted players

Observation For a convex function,

- the potential is minimized for non-increasing players
- the potential is maximized for non-decreasing players

Bounding the approximation factor

Bounding the approximation factor

Bounding the approximation factor

Main result

[Hansknecht K. Skopalik, `14]

Theorem Weighted congestion game have an α -approximate pure Nash equilibrium, where $\alpha \leq \min \{1 + \mu^{\max}, 1/(1 - \mu^{\min})\}$.

Main result

[Hansknecht K. Skopalik, `14]

Theorem Weighted congestion game have an α -approximate pure Nash equilibrium, where $\alpha \leq \min \{1 + \mu^{\max}, 1/(1 - \mu^{\min})\}$.

Proof:

Show that either the maximizing order is an α -approximate potential.

Bounding µmin

Bounding µmin

Bounding µmin

Functions	Approximation factors	
	2 players	all games
quadratic	1.054	4/3
cubic	1.074	1.785
polynomials of max. degree Δ		Δ +1
concave		3/2

Functions	Approximation factors	
	2 players	all games
quadratic	1.054	4/3
cubic	1.074	1.785
polynomials of max. degree Δ		Δ +1
concave		3/2

Thank you.